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1. Introduction 

A number of methods have been suggested for com- 
pressing data, such as telemetry records from a space- 
craft, into a form that is more economical to transmit. For 
example, instead of sending back sample readings of tem- 
perature every minute or every second, the mean and 
variance of temperature readings for that hour might be 
transmitted once each hour. Some recent work has been 
done at JPL in this area of data compression (Ref. 23). 

In most cases, however, the equipment required to com- 
press the data must be as simple as possible; and in some 
cases, the desired information must approximate the 
actual waveform of the signal. The methods discussed 
below have the advantage that they are quite simple. 
They operate directly on data that would normally be 
transmitted in an uncompressed mode so that an approxi- 
mation to the exact waveform is sent. 

2. Zeroth and Firsborder Data Compression 

The basic method is the following (Fig. 9). The data 
are given as samples, taken T seconds apart, of a signal 
f ( t ) .  The samples are taken often enough to define the 
signal, through some interpolation procedure, to the ac- 
curacy desired. At t = 0 (arbitrary), f ( 0 )  is transmitted. 
If f ( T )  and f ( 0 )  differ by more than some preassigned 
constant K ,  called the (half) aperture, then f ( ~ )  is trans- 
mitted at t = T .  If f ( ~ )  and f ( 0 )  differ by less than K ,  
then f ( T )  is not transmitted, and the next sample, f ( 2 ~ ) ,  
is compared with f ( 0 ) .  It will then be sent or not sent 
(at t = %), depending on how much it differs from f (0). 
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Fig. 9. Zeroth-order compression scheme 

Each time a sample, say f ( j ~ ) ,  is transmitted, it becomes 
the new reference to which succeeding samples are com- 
pared. Since the aperture effectively “floats” around the 
last transmitted sample, this is often called the floating- 
aperture scheme ( S P S  37-17, Vol. IV, pp. 81-84). We 
shall also refer to it as zeroth-order data compression. 

We can readily extend the basic idea to what could be 
called a first-order compression scheme, where the slope 
of the function is taken into account. In one possible 
method, f ( 0 )  is first sent. Then the slope of the curve 
between f (0) and f ( 7 )  can be found, and a line extended 
beyond f ( ~ )  with that slope. If the next sample, f ( % )  
differs by more than K from the line, it is transmitted; 
otherwise it is not, and the next sample is examined. 
As before, once a sample value has been transmitted, it 
becomes the new reference for succeeding samples, with 
a new slope determination (see Fig. 10). 
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Fig. 10. First-order compression scheme 

A variation on this first-order scheme has been sug- 
gested by T. 0. Anderson (JPL Section 339). This involves 
storing a small number of slopes for comparison with the 
actual slope of the function. Whenever a sample f ( j 7 )  is 
transmitted, the slope between it and the next sample 
is compared with the stored slopes, and the closest stored 
slope is used as the reference to which succeeding sam- 
ples are compared. 

It is fairly clear that higher compression ratios (the 
ratio of the total number of samples observed to the num- 
ber of transmitted samples) would be expected for the 
first-order compression scheme than for the zeroth-order 
one. However, we might also ask how much error we will 
suffer at the receiver when the (compressed) signal is 
reconstructed. 
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For the zeroth-order scheme, the error due to com- 
pression is bounded by +K about the last transmitted 
sample. The first-order case is not quite so simple, since 
we do not know the value of the slope of the curve at 
the last transmitted sample. If we were to send two values 
at each transmission, to cover both f ( j ~ )  and the slope of 

the curve at f ( j ~ ) ,  the (compression) error would ,be & K ,  
as before. But if only one sample is sent, the error is 
indeterminate, although the actual error after reconstruc- 
tion will not differ much from that of the zeroth-order 
scheme if a simple interpolation procedure is used. Fig. 11 
shows the possible errors resulting from the use of these 
data compression schemes. 
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Fig. 11 .  Bands of possible values for f (iT) at  receiver: 
(a) zeroth-order compression; (b) first-order com- 

pression with value of slope given; (c) first- 
order compression with value of 

slope not given 

3. Experimental Setup 

A good idea of the range of compression ratios available 
can be obtained by performing the various compression 
schemes on a random signal. For this purpose, colored 
Gaussian noise was generated on a computer by smooth- 
ing white Gaussian noise of zero mean and unit variance 
(also generated on the computer). The two compression 
schemes were programmed, and various combinations of 
T (sample spacing) and K (aperture) tried. In addition, 
for some choices of these parameters, the computer 
plotted the uncompressed data and the zeroth-order and 
first-order approximations. 

Here something should be said about subjectiveness in 
interpreting the data. We can think of many fidelity cri- 
teria or metrics that will give us a numerical measure 
of how well the compressed data approximates the origi- 
nal data. From each of these metrics we can make some 
kind of comparison between various compression schemes. 
However, two problems arise. First of all, one scheme may 
give best results under one metric while another scheme 
gives best results under another metric. Consequently, 
there is a subjectiveness in deciding which representation 
of fidelity is most appropriate for our particular purposes. 

There is also the related problem of determining what 
types of signals are most likely to be received. For exam- 
ple, for certain types of signals, sampling uniformly at a 
slow rate and using a good interpolation scheme may be 
preferable to using, say, the first-order data-compression 
method. However, for signals consisting of long steady 
periods, with occasional transient bursts, some other 
method would be more economical. The waveforms used 
were supposed to be short samples of the latter type of 
process. 

4. Results 

The experimental results are graphically displayed in 
Figs. 12-15, which illustrate typical behavior with changes 
in aperture-width and sample spacing. As mentioned be- 
fore, the compression rcitio is the ratio of the number of 
samples observed to the number actually transmitted after 
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Fig. 12. Compression ratio, mean sampling rate, 
and rms error vs. sampling rate (1 /sample 

spacing) for a half-aperture of 0.0125 

compression. Considered alone, the compression ratio is 
somewhat meaningless, since we can achieve arbitrarily 
high ratios simply by taking samples closer and closer 
together. A more meaningful measure of compression is 
the mean sampling rate, which is the average rate at 
which samples are transmitted after data compression has 
taken place; it can be derived from the compression 
ratio as: 

Sampling rate before compression + compression ratio. 

The e@ciency of the system relative to some theoretical 
optimum would be a better parameter, but the optimum 
is not usually known. 

Finally, m72s error refers to the rms value of the differ- 
ence between the uncompressed data and the compressed 
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data, after a linear interpolation between compressed 
points. This, then, is our measure of how well the trans- 
mitted samples approximate the original data. 

Of primary interest in this report is the comparison 
between the zeroth-order and first-order compression 
schemes (slope not transmitted). In all cases, substantially 
lower mean sampling rates were achieved with the first- 
order scheme than with the zeroth-order one (Figs. 12(b) 
and 13(b)). In most cases, this was not at the expense 
of a larger error (Figs. 12(c) and 13(c)). For small sam- 
pling rates in the neighborhood of less than 10 sam- 
ples/sec, the difference in error became less pronounced 
as the aperture was increased, as shown in Fig. 14(c), 
which plots error versus aperture for a rate of 4 sam- 
ples/sec. In general, then, the first-order scheme is prob- 
ably to be preferred over the zeroth-order one from the 
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standpoint of economy in transmission, disregarding the 
various hardware requirements of the two methods. 
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There are some interesting results aside from a 
comparison of the two schemes. The first relates to the 
observation made earlier that a high compression ratio, 
considered by itself, can be misleading. Fig. 12(a) and 
12(b) show that, even though the compression ratio in- 
creases with the sampling rate, the mean sampling rate 
is also increasing, which is not desirable. 
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A second observation is that although the rms error 
changes sharply with changes in the sampling rate for 
l / ~  < 10 samples/sec., it levels off above this point. Tak- 
ing samples closer together does not lessen our error 
substantially, but it does bring about an increase in the 
mean sampling rate after compression. There is definitely 
room in this area for design to achieve a trade-off between 
small errors and low average sampling rates. 
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Fig. 14. Compression ratio, mean sampling rate, 
and rms error vs. half-aperture ( K )  for a 

sample spacing of 0.25 sec. 

a 
W 

t a 

0.15 

a 0.10 

a 8 
W 
cn 
I a 0.05 

0 

I/ 

0 005 0 IO 0 15 0 20 025 030 

K I 
Fig. 15. Compression ratio, mean sampling rate, 

and rms error vs. half-aperture for a 
sample spacing of 0.05 sec. 

A thud observation is that the rms error for the first- 
order scheme was achieved with no knowledge of the 
slope of the signal at the receiver. Transmitting the slope 
will insure that we can reconstruct the signal with a 
maximum absolute error of K at each of the original 
sampling points. 

Finally, we can look at some actual waveforms (Figs. 
16-18) to compare the compression schemes. In all the 
plots, a linear interpolation was made between data 
points. In Fig. 16, it will be seen that even a very small 
aperture does not necessarily mean good fidelity. Fig. 17, 
however, illustrates the trend, mentioned above, of a 
smaller error with a smaller T (higher sampling rate). 
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Fig. 16. Plots of uncompressed data, and the zeroth 
and first-order approximations to them: 

T = 1 .O; K = 0.00625 
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Fig. 17. Plots of uncompressed data, and the zeroth 
and first-order approximations to them: 

T = 0.25; K = 0.00625 
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Fig. 18. Plots of uncornpressed data and the zeroth 
and first-order approximations to them: 

T = 1 .O; K = 0.5 

Figures 16 and 18, when compared, illustrate the loss of 
fidelity when the aperture is increased. Note particularly 
the zeroth-order case. 

We have seen that the first-order data compression 
scheme is generally superior to the zeroth-order one. A 
reduction of a factor of 3 to 6 or more in the number of 
samples sent occurs when the first-order system is chosen 
over the zeroth-order system, for a wide choice of param- 
eters. Moreover, the first-order system requires fewer tim- 
ing bits, since samples occur less frequently. It appears 
safe to say that, for a large class of signal sources, that 
resemble colored Gaussian sources, a factor of at least 3 
can be gained in choosing a first-order system over a 
zeroth-order one. 
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1.  introduction 

This article describes a unique and flexible system of 
interfacing ultrasonic delay lines within digital systems 
using integrated-circuit logic. To avoid misunderstanding, 
the term “NRZ” in this document refers only to input- 
output waveform relations which are similar to those 
achieved by conventional Non-Return-to-Zero detection 
schemes. However, all the advantages of the NRZ mode 
of operation are maintained while certain distinct dis- 
advantages are completely eliminated. 

The basic technique is to store digital information of an 
aperiodic nature in the delay medium and to retrieve an 
exact replica of that information delayed by a certain 
amount. The conventional method of detection is shown 
by the timing diagram in Fig. 19 where the amplified 
waveform from the delay line is “sliced” by two threshold 
levels: one level to set and the other to reset a flip-flop. 
A change of state at the output of the flip-flop takes place 
only if a “1” follows a “0,” or a “ 0  follows a “1.” This 
method produces an output waveform which is an exact 
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